Detectan grandes cantidades de agua en un disco protoplanetario


El observatorio espacial Herschel de la Agencia Espacial Europea (ESA) ha detectado emisiones de vapor de agua en el disco de polvo que rodea la joven estrella TW Hydrae. Estas emisiones indican la existencia de una reserva de agua capaz de llenar miles de océanos terrestres, por lo que se abre un nuevo campo de pruebas para investigar cómo llegó el agua a la Tierra.

Los científicos piensan que una buena parte del agua de nuestro planeta llegó a bordo de los cometas que chocaron contra la Tierra durante sus primeras etapas de formación. Esta hipótesis se ha respaldado recientemente con el descubrimiento realizado por Herschel de agua similar a la terrestre en un cometa (103P/Hartley 2).

 


 

Ahora el mismo telescopio espacial, gracias a su instrumento HIFI, también ha detectado emisiones de vapor de agua en todo el disco que se arremolina alrededor de TW Hydrae, una estrella formada hace unos 5-10 millones de años y localizada a 176 años luz de la Tierra. El descubrimiento muestra así que existen reservas importantes de agua en los discos protoplanetarios que rodean a algunas estrellas.

TW Hydrae se encuentra en la última etapa de su proceso de formación y está rodeada por un disco de polvo y gas que se terminará condensando para dar lugar a todo un sistema de planetas.

Los investigadores consideran que las emisiones se producen cuando la radiación ultravioleta interestelar calienta el hielo incrustado en los granos de polvo que conforman el disco. Esta reserva de agua podría ser un importante aporte para los planetas que se terminarán formando entorno a esta joven estrella.

“El fenómeno podría ser parecido a lo que ocurrió en nuestro propio Sistema Solar, en el que los granos de polvo cargados de hielo se fueron agregando para formar cometas”, explica Michiel Hogerheijde de la Universidad de Leiden, en los Países Bajos, que ha dirigido el estudio. “Pensamos que los cometas fueron una fuente importante de agua para los planetas de nuestro Sistema Solar”.

Simulaciones para conocer el volumen de hielo

Los científicos han realizado simulaciones que combinan estos nuevos resultados con las observaciones realizadas anteriormente desde tierra y con los datos del telescopio Spitzer de la NASA, lo que les ha permitido calcular el volumen de las reservas de hielo de este disco protoplanetario. Los resultados indican que el disco entorno a TW Hydrae almacena tanta agua que se podrían llenar varios miles de océanos terrestres.

“Ya hemos reservado tiempo de observación de Herschel para estudiar otros tres discos protoplanetarios entorno a otras estrellas”, confirma Hogerheijde. “Esperamos encontrar resultados similares a los de TW Hydrae, aunque como ahora estudiaremos objetos que están hasta tres veces más lejos, harán falta muchas más horas de observación”.

Esta investigación abre las puertas a una nueva forma de comprender el papel que juega el agua en los discos protoplanetarios, y ofrece a los científicos un nuevo campo de pruebas para investigar cómo llegó el agua a nuestro planeta.

“Gracias a Herschel podemos seguir el rastro del agua a través de todos los pasos del proceso de formación de las estrellas y de los planetas”, comenta Göran Pilbratt, Científico del Proyecto Herschel para la ESA.

“En TW Hydrae estamos observando la ‘materia prima’ a partir de la cual se terminarán formando nuevos planetas, lo que nos ayuda a comprender mejor cómo se formó el Sistema Solar en el que vivimos”, explica el investigador.

http://www.agenciasinc.es

Nebulosa de Órion

La nebulosa de Orión forma parte de una inmensa nube de gas y polvo llamada Nube de Orión, que se extiende por el centro de la constelación de Orión. Abarca una región de 10º en el cielo, y contiene nubes interestelares, cúmulos estelares, regiones H II, y nebulosas de reflexión.

Se originan a partir de pequeños cúmulos de hidrógeno frío y neutro, mezclado con trazas de otros elementos. Estas nebulosas pueden contener cientos de miles de masas solares y pueden medir varios centenares de años luz. Las fuerzas de gravedad que podrían obligar a la nube a que se colapse son muy pequeñas, y están igualadas debido a la poca presión que ejerce el gas en la nube.
Es posible que, debido a colisiones con un brazo espiral o a interacciones con ondas de choque emitidas por supernovas, los átomos precipiten en moléculas más pesadas, formando H2 o CO entre otras muchas moléculas, lo que da lugar a una nube molecular. Este es el primer paso para la formación de estrellas en la nube, que se producirán en un período de 10-30 millones de años, ya que la región debe pasar por la inestabilidad de Jeans y el gas desestabilizado se colapsa creando discos. El disco se concentra en el núcleo para formar una estrella, que podría estar rodeada por un disco protoplanetario. Este es el estado actual de la nebulosa, con estrellas todavía formándose a partir de nubes moleculares colapsadas. Las estrellas más jóvenes y brillantes que podemos observar en la nebulosa de Orión tienen menos de 300.000 años,31 y la más brillante de todas apenas 10.000 años.

About these ads

Deja un comentario

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s