Fisica Phisics: The Dark Matter Mystery, conferencias y seminarios en el CERN. Parte 2

Parte 2 del post Fisica Phisics: The Dark Matter Mystery, conferencias y seminarios en el CERN

Scenarios and Technological Challenges for a LHC Luminosity Upgrade: Introduction to the LHC Upgrade Program and Summary of Physics Motivations (1/5)

After a general introduction to the motivations for a LHC upgrade, the lectures will discuss the beam dynamics and technological challenges of the increase of the LHC luminosity, and the possible scenarios. Items such as a stronger final focus with larger aperture magnets, crab cavities, electron cloud issues, beam-beam interaction, machine protection and collimation will be discussed.

http://indico.cern.ch/conferenceDisplay.py?confId=55041

[flv]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2009/55041/55041-0753-kbps-480×360-25-fps-audio-64-kbps-44-kHz-stereo.flv[/flv]

[videofile]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2009/55041/55041-0480-kbps-384×288-25-fps-audio-128-kbps-48-kHz-stereo.wmv[/videofile]

http://cdsweb.cern.ch/record/1181478/

Resources:
Mangano-SLHC.pdf ( 3 MB – 08.06.2009 15:13:02)
sLHCSeminarJune09.pdf ( 1 MB – 08.06.2009 15:13:02)

Scenarios and Technological Challenges for a LHC Luminosity Upgrade: The Detector Upgrade and the Requirements on the Upgrade Scenarios (2/5)

http://indico.cern.ch/conferenceDisplay.py?confId=55042

[flv]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2009/55042/55042-0753-kbps-480×360-25-fps-audio-64-kbps-44-kHz-stereo.flv[/flv]

[videofile]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2009/55042/55042-0480-kbps-384×288-25-fps-audio-128-kbps-48-kHz-stereo.wmv[/videofile]

http://cdsweb.cern.ch/record/1181836/

http://indico.cern.ch/getFile.py/access?resId=0&materialId=slides&confId=55042

Scenarios and Technological Challenges for a LHC Luminosity Upgrade: Scenarios for the LHC Luminosity Upgrade (3/5)

http://indico.cern.ch/conferenceDisplay.py?confId=55043

Material

Scenarios and Technological Challenges for a LHC Luminosity Upgrade: Main Accelerator Science Challenges (4/5)

http://indico.cern.ch/conferenceDisplay.py?confId=55044

[flv]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2009/55044/55044-0753-kbps-480×360-25-fps-audio-64-kbps-44-kHz-stereo.flv[/flv]

[videofile]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2009/55044/55044-0480-kbps-384×288-25-fps-audio-128-kbps-48-kHz-stereo.wmv[/videofile]

http://cdsweb.cern.ch/record/1183411/

Resources:
CrabAcTrain.pdf ( 5 MB – 12.06.2009 08:22:05)
LHC_lumUP_Magnets_Rossi.pdf ( 3 MB – 15.06.2009 08:37:31)

Scenarios and Technological Challenges for a LHC Luminosity Upgrade: Main Accelerator Science Challenges (5/5)

http://indico.cern.ch/conferenceDisplay.py?confId=55045

[flv]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2009/55045/55045-0753-kbps-480×360-25-fps-audio-64-kbps-44-kHz-stereo.flv[/flv]

[videofile]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2009/55045/55045-0480-kbps-384×288-25-fps-audio-128-kbps-48-kHz-stereo.wmv[/videofile]

http://cdsweb.cern.ch/record/1183477/

Resources:
2009-jun12-assmann-out.pdf ( 3 MB – 15.06.2009 08:39:00)
New_Injectors_June2009_Garoby.pdf ( 7 MB – 15.06.2009 08:38:17)

Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)

by Dr. Marco Battaglia (CERN-PH/University of California, Santa Cruz, USA)
Monday 15 February 2010 from 11:00 to 12:00 (Europe/Zurich)
at CERN ( 500-1-001 – Main Auditorium )

How is the anticipated physics program of a future e+e- collider shaping the R&D for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.

http://indico.cern.ch/conferenceDisplay.py?confId=77821

[flv]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2010/77821/77821-0753-kbps-480×360-25-fps-audio-64-kbps-44-kHz-stereo.flv[/flv]

[videofile]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2010/77821/77821-Multirate-200-to-753-kbps-480×360.wmv[/videofile]

http://cdsweb.cern.ch/record/1240837/

http://indico.cern.ch/getFile.py/access?resId=0&materialId=slides&confId=77821

Detectors for Linear Colliders: Tracking and Vertexing (2/4)by Dr. Marco Battaglia (CERN-PH/University of California, Santa Cruz, USA)
Tuesday 16 February 2010 from 11:00 to 12:00 (Europe/Zurich)
at CERN ( 500-1-001 – Main Auditorium )

Efficient and precise determination of the flavour of partons in multi-hadron final states is essential to the anticipated LC physics program. This makes tracking in the vicinity of the interaction region of great importance. Tracking extrapolation and momentum resolution are specified by precise physics requirements. The R&D towards detectors able to meet these specifications will be discussed, together with some of their application beyond particle physics.

http://indico.cern.ch/conferenceDisplay.py?confId=77822

[flv]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2010/77822/77822-0753-kbps-480×360-25-fps-audio-64-kbps-44-kHz-stereo.flv[/flv]

[videofile]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2010/77822/77822-0480-kbps-384×288-25-fps-audio-128-kbps-48-kHz-stereo.wmv[/videofile]

http://cdsweb.cern.ch/record/1240838/

http://indico.cern.ch/getFile.py/access?resId=0&materialId=slides&confId=77822

Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

by Dr. Mark Thomson (University of Cambridge)
Wednesday 17 February 2010 from 11:00 to 12:00 (Europe/Zurich)
at CERN ( 4-3-006 – TH Theory Conference Room )

Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

http://indico.cern.ch/conferenceDisplay.py?confId=77823

[flv]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2010/77823/77823-0753-kbps-480×360-25-fps-audio-64-kbps-44-kHz-stereo.flv[/flv]

[videofile]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2010/77823/77823-0480-kbps-384×288-25-fps-audio-128-kbps-48-kHz-stereo.wmv[/videofile]

http://cdsweb.cern.ch/record/1241785/

http://indico.cern.ch/getFile.py/access?resId=0&materialId=slides&confId=77823

Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)

by Dr. Mark Thomson (University of Cambridge)
Thursday 18 February 2010 from 11:00 to 12:00 (Europe/Zurich)
at CERN ( 4-3-006 – TH Theory Conference Room )

In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

http://indico.cern.ch/conferenceDisplay.py?confId=77824

[flv]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2010/77824/77824-0753-kbps-480×360-25-fps-audio-64-kbps-44-kHz-stereo.flv[/flv]

[videofile]http://mediaarchive.cern.ch/MediaArchive/Video/Public/Conferences/2010/77824/77824-0480-kbps-384×288-25-fps-audio-128-kbps-48-kHz-stereo.wmv[/videofile]

http://cdsweb.cern.ch/record/1240840/

http://indico.cern.ch/getFile.py/access?resId=0&materialId=slides&confId=77824

LHC News April 2010 : LHC First Physics

Date- 15th April 10 Source- http://cdsweb.cern.ch/collection/Vide…

ENERGIA LIBRE. CARRERA HACIA EL PUNTO CERO

Stephen Hawking, el gran científico de nuestra era, el suscesor de la cátedra de Newton nos explica en sus propias palabras la estructura del Universo. Stephen Hawking: “debemos colonizar otros planetas o estamos condenados a la extinción”, físico teórico británico, es conocido por sus intentos de aunar la relatividad general con la teoría cuántica y por sus aportaciones íntegramente relacionadas con la cosmología. Hawking tiene un cerebro privilegiado, como pocos. Stephen William Hawking nació el 8 de enero de 1942 en Oxford, Inglaterra.Ha escrito Historia del tiempo: del Big Bang a los agujeros negros (1988) y otras obras que se han convertido en best-sellers. Hawking ha hecho importantes aportaciones a la ciencia mientras lucha contra la esclerosis lateral amiotrófica, una enfermedad incurable del sistema nervioso. En 1989 le fue concedido el Premio Príncipe de Asturias de la Concordia. El Profesor Hawking tiene doce doctorados honoríficos, ha ganado el CBE en 1982 y fue designado Compañero de Honor en 1989. Es el receptor de numerosos premios, galardones y medallas y es Miembro de Honor de la Royal Society y de la US National Academy of Sciencies. Stephen Hawking combina la vida en familia y su investigación en física teórica, junto con un extenso programa de viajes y conferencias.Alrededor del año 2004 propuso su nueva teoría acerca de las “simas o agujeros negros” un término que por lo general se aplica a los restos de estrellas que sufrieron un colapso gravitacional después de agotar todo su combustible nuclear. Según Hawking, el universo está prácticamente lleno de “pequeños agujeros negros” y considera que estos se formaron del material original del universo. Ha declarado también acerca del origen del universo: “En la teoría clásica de la relatividad general […] el principio del universo tiene que ser una singularidad de densidad y curvatura del espacio-tiempo infinitas. En esas circunstancias dejarían de regir todas las leyes conocidas de la física (…) Mientras más examinamos el universo, descubrimos que de ninguna manera es arbitrario, sino que obedece ciertas leyes bien definidas que funcionan en diferentes campos. Parece muy razonable suponer que haya principios unificadores, de modo que todas las leyes sean parte de alguna ley mayor”

CERN : Maria Spiropulu, CMS, Shift Leader

Date- 16th Dec 09 Source- http://www.cern.ch

‘Maria Spiropulu, CMS, Shift Leader, December 14th 2009, reporting on first high energy collisions (1.2 TeV per beam) at CMS.’

‘The God Particle’: The Higgs Boson

The Standard Model of Particle Physics (Part 8): The Higgs Mechanism.

The Standard Model of particle physics is a theory of three of the four known fundamental interactions and the elementary particles that take part in these interactions. These particles make up all visible matter in the universe.

Every high energy physics experiment carried out since the mid-20th century has eventually yielded findings consistent with the Standard Model.

Still, the Standard Model falls short of being a complete theory of fundamental interactions because it does not include gravitation, dark matter, or dark energy. It is not quite a complete description of leptons either, because it does not describe nonzero neutrino masses, although simple natural extensions do.

The HIGGS BOSON is a massive scalar elementary particle predicted to exist by the Standard Model in particle physics. At present there are no other known fundamental scalar particles in nature.

The Higgs boson is the only Standard Model particle that has not been observed. Experimental detection of the Higgs boson would help explain the origin of mass in the universe.

The Higgs boson would explain the difference between the massless photon, which mediates electromagnetism, and the massive W and Z bosons, which mediate the weak force. If the Higgs boson exists, it is an integral and pervasive component of the material world.

The Large Hadron Collider (LHC) at CERN, which became operational on November 20, 2009, is expected to provide experimental evidence of the existence or non-existence of the Higgs boson. Experiments at Fermilab also continue previous attempts at detection, albeit hindered by the lower energy of the Fermilab Tevatron accelerator.

It has been reported that Fermilab physicists suggest that the odds of Tevatron detecting the Higgs boson are between 50% and 96%, depending on its mass.

The Higgs mechanism, which gives mass to vector bosons, was theorized in 1964 by François Englert and Robert Brout (“boson scalaire”); in October of the same year by Peter Higgs, working from the ideas of Philip Anderson; and independently by Gerald Guralnik, C. R. Hagen, and Tom Kibble,who worked out the results by the spring of 1963.

The three papers written on this discovery by Guralnik, Hagen, Kibble, Higgs, Brout, and Englert were each recognized as milestone papers during Physical Review Letters 50th anniversary celebration. While each of these famous papers took similar approaches, the contributions and differences between the 1964 PRL Symmetry Breaking papers is noteworthy.

These six physicists were also awarded the 2010 J. J. Sakurai Prize for Theoretical Particle Physics for this work. Steven Weinberg and Abdus Salam were the first to apply the Higgs mechanism to the electroweak symmetry breaking. The electroweak theory predicts a neutral particle whose mass is not far from that of the W and Z bosons.

LHC beats world energy record!

‘Geneva, 30 November 2009. CERN Large Hadron Collider has today become the worlds highest energy particle accelerator, having accelerated its twin beams of protons to an energy of 1.18 TeV in the early hours of the morning. This exceeds the previous world record of 0.98 TeV, which had been held by the US Fermi National Accelerator Laboratorys Tevatron collider since 2001. It marks another important milestone on the road to first physics at the LHC in 2010. We are still coming to terms with just how smoothly the LHC commissioning is going, said CERN Director General Rolf Heuer. It is fantastic. However, we are continuing to take it step by step, and there is still a lot to do before we start physics in 2010. Im keeping my champagne on ice until then. These developments come just 10 days after the LHC restart, demonstrating the excellent performance of the machine. First beams were injected into the LHC on Friday 20 November. Over the following days, the machines operators circulated beams around the ring alternately in one direction and then the other at the injection energy of 450 GeV, gradually increasing the beam lifetime to around 10 hours. On Monday 23 November, two beams circulated together for the first time, and the four big LHC detectors recorded their first collision data. Last nights achievement brings further confirmation that the LHC is progressing smoothly towards the objective of first physics early in 2010. The world record energy was first broken yesterday evening, when beam 1 was accelerated from 450 GeV, reaching 1050 GeV (1.05 TeV) at 21:48, Sunday 29 November. Three hours later both LHC beams were successfully accelerated to 1.18 TeV, at 00:44, 30 November. I was here 20 years ago when we switched on CERNs last major particle accelerator, LEP, said Accelerators and Technology Director Steve Myers. I thought that was a great machine to operate, but this is something else. What took us days or weeks with LEP, were doing in hours with the LHC. So far, it all augurs well for a great research programme. Next on the schedule is a concentrated commissioning phase aimed at increasing the beam intensity before delivering good quantities of collision data to the experiments before Christmas. So far, all the LHC commissioning work has been carried out with a low intensity pilot beam. Higher intensity is needed to provide meaningful proton-proton collision rates. The current commissioning phase aims to make sure that these higher intensities can be safely handled and that stable conditions can be guaranteed for the experiments during collisions. This phase is estimated to take around a week, after which the LHC will be colliding beams for calibration purposes until the end of the year. First physics at the LHC is scheduled for the first quarter of 2010, at a collision energy of 7 TeV (3.5 TeV per beam).’

On Sunday Nov 29th 2009, the LHC operators managed to reach for the first time the record energy of 1.08 TeV with one beam. A few hours later, on Mon Nov. 30 at 00:44 they managed to circulate both beams at the record energy of 1.18 TeV for 45 minutes.

Información recopiladay editada por PortalHispano , colaboración Veronica P. V.

Anuncios

5 Respuestas a “Fisica Phisics: The Dark Matter Mystery, conferencias y seminarios en el CERN. Parte 2

  1. Pingback: Fisica Phisics: The Dark Matter Mystery, conferencias y seminarios en el CERN

  2. Pingback: La cosmología de la no expansión busca derrocar la teoría del Big Bang

  3. Pingback: Un bosón de Higgs supersimétrico como candidato de baja masa a la materia oscura

  4. Pingback: El LHC estrecha la búsqueda del bosón de Higgs

  5. Pingback: Físicos españoles investigan las causas de la expansión acelerada del Universo

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s